5.2: The Unit Circle and Sine and Cosine Functions

- Equation of a circle centered at (a, b) with radius r is $(x a)^2 + (y b)^2 = r^2$
- The unit circle is the circle of radius 1 centered at origin.
- Equation of the **unit circle** is $x^2 + y^2 = 1$ by the distance formula.

Sine and Cosine Functions

• Pythagorean Identity: $\sin^2(t) + \cos^2(t) = 1$ (it is derived from the equation of unit circle).

Now, you can complete Problems 1-3.

Sine and Cosine of Well-known Angles in the First Quadrant:

We are using the following geometric figures, the properties of equilateral triangles, the properties of isosceles triangles and Pythagorean Theorem to find Sine and Cosine functions for $t = 60^{\circ}, 30^{\circ}, 45^{\circ}$.

- Second Quadrant Reference angle is πt or $180^{\circ} t^{\circ}$. Sine is positive and Cosine is negative.
- Third Quadrant Reference angle is $t \pi$ or $t^{\circ} 180^{\circ}$. Sine and Cosine are both negative.
- Fourth Quadrant Reference angle is $2\pi t$ or $360^{\circ} t^{\circ}$. Sine is negative and Cosine is positive.
- Now, you can complete Problems 5 and 6.

• Pythagorean identity: $\cos^2(t) + \sin^2(t) = 1$. Note that we replaced $(\sin(t))^2$ with $\sin^2(t)$ and $(\cos(t))^2$ with $\cos^2(t)$.

1. If
$$\cos(t) = \frac{5}{13}$$
 and $0 < t < \frac{\pi}{2}$, what is $\sin(t)$?

2. If
$$\sin(t) = \frac{4}{5}$$
 and $0 < t < \frac{\pi}{2}$, what is $\cos(t)$?

3. Complete the table.

Terminal Point	Quadrant
$\left(-\frac{1}{2},\right)$	third
$\begin{pmatrix} , -\frac{5}{13} \end{pmatrix}$	forth
$\left(\frac{\sqrt{3}}{2},\right)$	forth
$\left(, -\frac{4}{5} \right)$	third
$\left(\begin{array}{c},\frac{4}{5}\right)$	second
$\left(-\frac{4}{5},\right)$	second

4. Memorize the following reference angle information. Explain the pattern that you see. Rewrite the simplified values in the second table.

t	sin(t)	$\cos(t)$	t	sin(t)	$\cos(t)$
0	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{4}}{2}$	0		
$\frac{\pi}{6}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$		
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$		
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\pi}{3}$		
$\frac{\pi}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{0}}{2}$	$\frac{\pi}{2}$		

5. Let $t = \frac{5\pi}{6}$. Then the terminal point on the unit circle associated to t is: (a) $\pi/6$ (c) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

(b)
$$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$
 (d) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

6. Complete the table.

al Point Distance on	unit circle Terminal Point
$\frac{9\pi}{2}$	
$\frac{19\pi}{2}$	
$\frac{29\pi}{2}$	
16π	
25π	
	al PointDistance on $\frac{9\pi}{2}$ $\frac{19\pi}{2}$ $\frac{19\pi}{2}$ $\frac{29\pi}{2}$ 16π 25π

Related Video:

Memorizing Sine and Cosine for Important Angles:

 $https://mediahub.ku.edu/media/MATH+-+Memorizing+Sine+and+Cosine+for+Important+Angles.m4v/1_ulc6db7mathetables/mediahub.ku.edu/media/MATH+-+Memorizing+Sine+and+Cosine+for+Important+Angles.m4v/1_ulc6db7mathetables/mathetab$