
5.2: The Unit Circle and Sine and Cosine Functions

• Equation of a circle centered at (a,b) with radius r is (x −a)2 + (y −b)2 = r 2

• The unit circle is the circle of radius 1 centered at origin.

• Equation of the unit circle is x2 + y2 = 1 by the distance formula.
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• Pythagorean Identity: sin2(t )+cos2(t ) = 1 (it is derived from the equation of unit circle).

Now, you can complete Problems 1-3.

Sine and Cosine of Well-known Angles in the First Quadrant:

We are using the following geometric figures, the properties of equilateral triangles, the prop-
erties of isosceles triangles and Pythagorean Theorem to find Sine and Cosine functions for
t = 60◦, 30◦, 45◦.
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• Now, you can complete Problem 4.
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Reference Angles
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Why Reference Angles Work
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• Second Quadrant Reference angle is π− t or 180◦− t◦. Sine is positive and Cosine is negative.

• Third Quadrant Reference angle is t −π or t◦−180◦.

Sine and Cosine are both negative.

• Fourth Quadrant Reference angle is 2π− t or 360◦− t◦. Sine is negative and Cosine is positive.

• Now, you can complete Problems 5 and 6.
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What You Need to Memorize on the Unit Circle

•
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In The Unit Circle: sin(t ) = y cos(t ) = x tan(t ) = y
x when x 6= 0 and etc.

• Pythagorean identity: cos2(t )+ sin2(t ) = 1. Note that we replaced (sin(t ))2 with sin2(t ) and
(cos(t ))2 with cos2(t ).

1. If cos(t ) = 5
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and 0 < t < π
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3. Complete the table.

Terminal Point Quadrant
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4. Memorize the following reference angle information. Explain the pattern that you see. Rewrite
the simplified values in the second table.
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5. Let t = 5π

6
. Then the terminal point on the unit circle associated to t is:
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6. Complete the table.
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Related Video:

Memorizing Sine and Cosine for Important Angles:
https://mediahub.ku.edu/media/MATH+-+Memorizing+Sine+and+Cosine+for+Important+Angles.m4v/1_ulc6db7m
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